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Abstract This paper describes a system for detecting and
estimating the properties of multiple travel lanes in an ur-
ban road network from calibrated video imagery and laser
range data acquired by a moving vehicle. The system op-
erates in real-time in several stages on multiple processors,
fusing detected road markings, obstacles, and curbs into a
stable non-parametric estimate of nearby travel lanes. The
system incorporates elements of a provided piecewise-linear
road network as a weak prior.

Our method is notable in several respects: it detects and
estimates multiple travel lanes; it fuses asynchronous, het-
erogeneous sensor streams; it handles high-curvature roads;
and it makes no assumption about the position or orientation
of the vehicle with respect to the road.

We analyze the system’s performance in the context of
the 2007 DARPA Urban Challenge. With five cameras and
thirteen lidars, our method was incorporated into a closed-
loop controller to successfully guide an autonomous vehicle
through a 90 km urban course at speeds up to 40 km/h amidst
moving traffic.

Keywords Lane estimation · Vision · Lidar · Lane-finding

1 Introduction

The road systems of developed countries include millions of
kilometers of paved roads, of which a large fraction include
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painted lane boundaries separating travel lanes from each
other or from the road shoulder. For human drivers, these
markings form important perceptual cues, making driving
both safer and more time-efficient (Miller 1993). In mist,
heavy fog or when a driver is blinded by the headlights of
an oncoming car, lane markings may be the principal or
only cue enabling the driver to advance safely. Moreover,
roadway designers use the number, color and type of lane
markings to encode spatially-varying traffic rules, for ex-
ample no-passing regions, opportunities for left turns across
oncoming traffic, regions in which one may (or may not)
change lanes, and preferred paths through complex intersec-
tions.

Even the most optimistic scenarios for autonomous ve-
hicle deployment assume the presence of large numbers
of human drivers for the next several decades. Given the
centrality of lane markings to public safety, it is clear that
they will continue to be maintained indefinitely. Thus au-
tonomous vehicle researchers, as they design self-driving
cars, may assume that lane markings will be commonly en-
countered.

We define the lane-finding problem as divining, from live
sensor data and (when available) prior information, the pres-
ence of one or more travel lanes in the vehicle’s vicinity, and
the semantic, topological, and geometric properties of each
lane. By semantic properties, we mean the lane’s travel sense
and the color (white, yellow) and type (single, double, solid,
dashed) of each of its boundaries. By topological proper-
ties, we mean the connectivity of multiple lanes in regions
where lanes start, split, merge, or terminate. We use the term
geometric properties to mean the centerline location and lat-
eral extent of the lane. This paper focuses on detecting lanes
where they exist, and determining geometric information for
each detected lane (Fig. 1). We infer semantic and topolog-
ical information in a limited sense, by matching detected
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Fig. 1 Our system uses many asynchronous heterogeneous sensor
streams to detect road paint and road edges (yellow) and estimate the
centerlines of multiple travel lanes (cyan)

lanes to edges in an annotated input digraph representing
the road network.

1.1 Related work

Aspects of the lane-finding problem have been studied for
decades in the context of autonomous land vehicle de-
velopment (Dickmanns and Mysliwetz 1992; Thorpe et
al. 1988) and driver-assistance technologies (Bertozzi and
Broggi 1998; Bertozzi et al. 2000; Apostoloff and Zelin-
sky 2004; Fletcher and Zelinsky 2006; Kim 2008). Mc-
Call and Trivedi provide an excellent survey (McCall and
Trivedi 2006). Lane-finding systems intended to support
autonomous operation have typically focused on highway
driving (Dickmanns and Mysliwetz 1992; Thorpe et al.
1988), where roads have low curvature and prominent lane
markings, rather than on urban environments. Previous au-
tonomous driving systems have exhibited limited autonomy
in the sense that they required a human driver to “stage” the
vehicle into a valid lane before enabling autonomous opera-
tion, and to take control whenever the system could not han-
dle the required task, for example during highway entrance
or exit maneuvers (Thorpe et al. 1988).

Driver-assistance technologies, by contrast, are intended
as continuous adjuncts to human driving. Commonly de-
ployed Lane Departure Warning (LDW) systems are de-
signed to alert the human driver to an imminent (unsignaled)
lane departure (Mobileye 2009; Iteris 2009; Pomerleau and
Jochem 1996). These systems typically assume that a vehi-
cle is in a highway driving situation and that a human driver
is controlling the vehicle correctly, or nearly so. Highways
exhibit lower curvature than lower-speed roads, and do not
contain intersections. In vehicles with LDW systems, the hu-
man driver is responsible for selecting an appropriate travel
lane, is assumed to spend the majority of driving time within
such a lane, is responsible for identifying possible alterna-
tive travel lanes, and only occasionally changes into such a
lane. Because LDW systems are essentially limited to pro-
viding cues that assist the driver in staying within the current

lane, achieving fully automatic lane detection and tracking
is not simply a matter of porting an LDW system into the
front end of an autonomous vehicle.

Clearly, in order to exhibit safe, human-like driving, an
autonomous vehicle must have good awareness of all nearby
travel lanes. In contrast to prior lane-keeping and LDW sys-
tems, the lane finding system presented here aims to guide
a fully autonomous land vehicle through an urban road net-
work. In particular, our system is distinct from previous ef-
forts in several respects: it attempts to detect and classify all
observable lanes, rather than just the single lane occupied
by the vehicle; it operates in the presence of complex road
geometry, static hazards and obstacles, and moving vehi-
cles; and it uses prior information (in the form of a topolog-
ical road network with sparse geometric information) when
available.

The apparent difficulty of matching human performance
on sensing and perception tasks has led some researchers to
investigate the use of augmenting roadways with a physi-
cal infrastructure amenable to autonomous driving, such as
magnetic markers embedded under the road surface (Zhang
1991). While this approach has been demonstrated in limited
settings, it has yet to achieve widespread adoption and faces
a number of drawbacks. First, the cost of updating and main-
taining millions of kilometers of roadway is prohibitive.
Second, the danger of autonomous vehicles perceiving and
acting upon a different infrastructure than human drivers do
(magnets vs. visible markings) becomes very real when one
is modified and the other is not, whether through accident,
delay, or malicious behavior.

Advances in computer networking and data storage tech-
nology in recent years have brought the possibility of a
data infrastructure within reach. In addition to semantic and
topological information, such an infrastructure might also
contain fine-grained road maps registered in a global refer-
ence frame; advocates of these maps argue that they could
be used to guide autonomous vehicles. We propose that a
data infrastructure is useful for topological information and
sparse geometry, but reject relying upon it for dense geomet-
ric information.

While easier to maintain than a physical infrastructure,
a data infrastructure with fine-grained road maps might still
become “stale” with respect to actual visual road markings.
Even for human drivers, mapping staleness, errors, and in-
completeness have already been implicated in accidents in
which drivers trusted too closely their satellite navigation
systems, literally favoring them over information from their
own senses (CNN 2008; Lyall 2007). Static fine-grained
maps are clearly not sufficient for safe driving; to operate
safely, in our view, an autonomous vehicle must be able to
use local sensors to perceive and understand the environ-
ment.
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The primary contributions of this paper are:

– A method for estimating multiple travel lanes within a
typical urban road network using only information from
local sensors;

– A method for fusing these estimates with a weak prior,
such as a topological road map with sparse metrical infor-
mation;

– Methods for using monocular cameras to detect road
markings; and

– Multi-sensor fusion algorithms combining information
from video and lidar sensors.

We also provide a quantitative analysis of our method’s op-
eration, describe its failure modes, and discuss several pos-
sible directions for future work.

2 Approach

Our approach to lane-finding involves three stages. In the
first stage, the system detects and localizes painted road
markings in each video frame, using lidar data to reduce the
false positive detection rate. A second stage processes road
paint detections along with lidar-detected curbs to estimate
centerlines of nearby travel lanes. Finally, any detected cen-
terlines are filtered, tracked, and fused with a weak prior to
produce one or more non-parametric lane outputs. The data
flow of our approach is illustrated in Fig. 2.

Separation of the three stages provides simplicity, mod-
ularity, and scalability, allowing us to experiment with each
stage independently of the others and to easily substitute dif-
ferent algorithms at each stage. For example, we evaluated
and ultimately utilized two separate algorithms in parallel
for detecting road paint, both of which are described below.
By introducing sensor-independent abstractions of environ-
mental features, our system is able to scale to many hetero-
geneous sensors.

2.1 Road boundary detection

This section describes two vision algorithms used for de-
tecting painted lines on the road based on matched filters
(Sect. 2.1.2) and spatial gradients (Sect. 2.1.3), respectively,
as well as a technique for detecting curbs using 3D laser
scan data (Sect. 2.1.5). As input, the vision algorithms re-
ceive grayscale images from a single camera, pose informa-
tion from the vehicle’s IMU (Sect. 2.1.1), and 3D obstacles
detected from lidar if available (Sect. 2.1.4). As output, all
detection algorithms produce a list of curves, represented as
polylines in a local coordinate frame (Moore et al. 2009),
that correspond to painted line markings or physical road
boundaries estimated from the sensor data.

The road paint detection algorithms operate indepen-
dently on each camera and on each temporal image frame.

Fig. 2 Raw images acquired by a set of cameras are processed in-
dependently and asynchronously to produce lane boundary detections,
assisted by real-time vehicle pose estimates and (optionally) obstacles
detected from lidar data. Next, spatial/temporal data fusion combines
all visual detections, along with curb boundaries (optionally) obtained
from lidar data, and outputs high-confidence lane candidates. Finally,
lanes are estimated and tracked over time, influenced by curvature con-
straints and priors generated from map data if available

Although state information could be tracked over time and
transferred between frames to assist extraction and curve fit-
ting, we kept the approach stateless since the higher-level
lane fusion and tracking stages perform both spatial and
temporal filtering in local coordinates. We also eliminate
substantial computational expense by operating directly on
raw camera images rather than on inverse-perspective cor-
rected images (McCall and Trivedi 2006; Kim 2008), while
still reaping the benefits of calibrated cameras and real-
world measurements.

We will describe each detection algorithm in greater de-
tail below. First we discuss the importance of accurately in-
strumented sensor data.

2.1.1 Absolute sensor calibration

Our detection algorithms assume that GPS and IMU nav-
igation data are available, and of sufficient quality to cor-
rect for short-term variations in vehicle heading, pitch, and
roll during image and laser processing. In addition, we as-
sume that the intrinsic lens parameters (focal length, optical
center, and distortion) for each camera and the extrinsic pa-
rameters (vehicle-relative pose) for each sensor have been
determined in advance. This “absolute calibration” allows
sensor data preprocessing in several ways, some of which
are illustrated in Fig. 3:
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Fig. 3 Use of absolute camera calibration to project real-world quan-
tities, such as sun position and horizon line, into a video image

– The horizon line is projected into each image frame. Only
pixel rows below the projected horizon are considered
for further processing, thus both enhancing runtime ef-
ficiency and suppressing potential false positives arising
from sky texture.

– Our lidar-based obstacle detector supplies real-time infor-
mation about the locations of large objects near the vehi-
cle. The detector makes use of relative sensor and vehicle
poses to aggregate 3D point data into a common coor-
dinate system, and to produce final measurements in the
local reference frame.

– Detected obstacles are projected into the image, and their
extents masked, as part of the paint detection algorithms,
an important step in reducing false positives.

– Inertial data allows us to project the expected location of
the ground plane into the image, providing useful priors
and real-world (rather than image-relative) parameters for
the vision-based paint detection algorithms.

– Precise knowledge of the date, time, and Earth-relative
vehicle pose allow computation of the solar ephemeris;
line estimates that point toward the sun in image coor-
dinates are then removed. Others have used a similar ap-
proach for shadow prediction (Rasmussen 2008); we have
found it successful for preventing spurious paint detec-
tions arising from lens flare.

– All detections can be situated in a common local refer-
ence frame for meaningful fusion by the higher-level lane
centerline estimation stage.

2.1.2 Road paint from matched filters

Our first image processing pipeline begins by constructing
a one-dimensional matched filter for each row of the input
image, such that the width of the filter is the expected width
of a painted line marking (e.g. 10 cm) when projected into
image coordinates. Each row must have its own filter width
because line widths appear smaller as they come closer to
the horizon. In addition, horizontal and vertical lines in the
image are detected by constructing separate kernels, one of
which convolves across the vertical dimension of the image

Fig. 4 The shape of the one-dimensional kernel used for matching
road paint. By applying this kernel horizontally we detect vertical lines
and vice versa. The kernel is scaled to the expected width of a line
marking at a given image row and sampled according to the pixel grid

and one across the horizontal dimension. The shape of each
kernel is shown in Fig. 4. The width of the kernel’s support
(the portion of the kernel with non-zero weight) is a trade-
off between noise tolerance and the ability to detect closely
spaced lines. We chose the support so that double-yellow
lines in the center of the road are detected successfully.

Our matched filter approach is similar to that of McCall
and Trivedi, who used steerable filters (McCall and Trivedi
2006). Our fixed vertical and horizontal kernels are approx-
imations that have the advantage of executing faster and the
disadvantage of being less sensitive to certain line orienta-
tions.

For each video frame, the kernel is sampled along the
pixel grid at each row according to the projection of the
ground plane inferred from live IMU data. The kernels are
then convolved with the image data from each row to pro-
duce the output of the matched filter. Convolution compu-
tation is suppressed where the kernel width is less than one
pixel. As shown in Fig. 5, this operation successfully dis-
cards most of the clutter in the scene and produces a strong
response along line-like features. This is done separately for
the vertical and horizontal kernels, giving two output images
(Figs. 5b, c).

Next, we iterate over each row of the horizontal filter out-
put and each column of the vertical filter output to build a
list of one-dimensional local maxima which will serve as
features. Ideally, these maxima occur at the center of any
painted lines, although they also occur due to noise and
other spurious detections. We reject maxima with a mag-
nitude less than 4% of the maximum possible magnitude, a
threshold that was tuned manually to reject maxima occur-
ring in low-contrast image regions.

For each feature, we compute the orientation of the un-
derlying line by finding the direction of principal curvature.
At the center of a road paint line, the second derivative of
filter response will be large and positive in the direction per-
pendicular to the line. Parallel to the line, the second deriv-
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Fig. 5 Our first road paint detector: (a) The original image is (b) con-
volved with a horizontal matched filter at each row and (c) a vertical
filter. (d) Local maxima in the horizontal filter response are enumerated
and their dominant orientations computed, depicted by the perpendicu-

lar to each maximum. (e) A distance transform describing the shortest
distance from each pixel to the local maxima is used to guide a spline
search that (f) connects nearby maxima into cubic Hermite splines

ative will be near zero. Thus, we first compute the Hessian,
the 2 × 2 matrix of second derivatives

H =
[
Fxx Fxy

Fxy Fyy

]
(1)

where F is the image of filter responses. The second deriv-
atives are computed with 3 × 3 Sobel kernels. The largest
eigenvalue of H is the principal curvature, and its corre-
sponding eigenvector is the direction of that curvature. We
attach that direction to the feature as the perpendicular of the
underlying line (Fig. 5d).

Once the list of features is generated, we compute a dis-
tance transform of the image, such that the intensity at each
pixel of the distance transform is proportional to the Euclid-
ean distance from that pixel to the nearest feature (Fig. 5e).

We use cubic Hermite splines to connect the features into
continuous curves that represent the underlying lane mark-

ings. The goal is to construct splines with approximately
50 pixels between control points. This spacing allows the
splines to have relatively few parameters yet still follow the
sometimes erratic curves present in urban driving situations.
A cubic Hermite spline is parameterized as

p(t) = (2t3 − 3t2 + 1)p0 + (t3 − 2t2 + t)hm0

+ (−2t3 + 3t2)p1 + (t3 − t2)hm1 (2)

where t ∈ [0,1] and p0 and p1 are a pair of neighboring
control points (Bartels and Beatty 1987). This parameteri-
zation ensures that the tangents m0 and m1 are continuous
between pairs of control points. The scale factor h is used
to scale the tangent vectors to the appropriate magnitude.
We use h = ‖p0 − p1‖. When generating splines, we use
features extracted above directly as control points and the
extracted perpendicular vectors as the tangents (after rotat-
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ing them 90 degrees to orient them in the “forward" spline
direction).

We now describe our algorithm for fitting splines to the
features. First, the algorithm selects 100 “seed” features near
the bottom of the image, since features near the bottom are
closer to the camera and more well-defined. We then con-
sider every feature further than 50 pixels but closer than
60 pixels away from the starting feature. Any features in this
annular region are candidates for the second control point of
a spline that starts at the seed feature. For each candidate, we
sample a spline from the seed point to the candidate point us-
ing equation (2) and sum the squared values of the distance
transform along the sampled spline. The candidate with the
smallest sum is selected as the next control point. This can-
didate is now the new seed and the search continues with
a new annulus centered at that point. This “greedy” search
for an extension of the spline terminates when the average
value of the distance transform along the new portion of the
spline is larger than 3 pixels. Additional splines are found in
the same way until either a pre-defined number of splines is
reached (we use 20) or no additional splines can be found.
After each spline is found, its constituent features are re-
moved from the global feature list and the distance transform
recomputed so that the same spline is not matched twice.

The sensitivity of the spline finder is tuned using a thresh-
old on spline score. A spline’s score is computed as the av-
erage squared distance of the spline from features along its
path, with smaller scores indicating better matches. A bonus
is also assigned to longer splines with more control points.
This bonus encourages splines that extend toward the hori-
zon, where line features are weaker and splines might oth-
erwise be rejected. In our system, we tuned this threshold
toward extra false positives so that higher layers would have
more true positives with which to work. If this road paint
detector were to be used directly by a navigation system, it
could be tuned to instead reduce false positives at the cost of
reduced sensitivity.

2.1.3 Road paint from symmetric contours

The second road paint detection mechanism employed in our
system relies on more traditional low-level image process-
ing. In order to maximize frame throughput, and thus re-
duce the time between successive inputs to the lane fusion
and tracking components, we designed the module to utilize
fairly simple and easily-vectorized image operations.

The central observation behind this detector is that im-
age features of interest—namely lines corresponding to road
paint—typically consist of well-defined, elongated, contin-
uous regions that are brighter than their surround. While
this characterization excludes circular reflectors and dark-
on-light road markings, it does encompass solid and dashed
lane boundaries, stop lines, crosswalks, white and yellow

Fig. 6 Progression from (a) original image through (b) smoothed gra-
dients (red), border contours (green), and symmetric contour pairs (yel-
low) to form (c) a paint line candidate. Final line detections are shown
in (d) the bottom image

paint on road pavements of various types, and markings
seen through cast shadows across the road surface. Thus,
our strategy is to first detect the potential boundaries of road
paint using spatial gradient operators, then estimate the de-
sired line centers by searching for boundaries that enclose a
brighter region; that is, boundary pairs which are proximal
and roughly parallel in world space and whose local gradi-
ents point toward each other (Fig. 6).

Our approach is quite flexible and robust to many condi-
tions, including several potential shortcomings identified in
other road paint extraction algorithms (McCall and Trivedi
2006). Most extraneous image lines are rejected by the
symmetric dark-light-dark assumption, metric width and
length thresholds, and curvature constraints; straight and
curved segments observed from any perspective are han-
dled uniformly, unlike template-based (Taylor et al. 1999;
Pomerleau and Jochem 1996) or frequency-based (Kreucher
and Lakshmanan 1999) techniques; and features are reliably
extracted even under variations in road texture and scene il-
lumination, unlike intensity analysis techniques (Arbib and
Pomerleau 1995; Baluja 1996).

The contour-based road line detector consists of three
steps: low-level image processing to detect raw features;
contour extraction to produce initial line candidates; and
contour post-processing for smoothing and false positive
reduction. The first step applies local lowpass and deriv-
ative operators to produce the noise-suppressed direction
and magnitude of the raw grayscale image’s spatial gradi-
ents. A loose threshold is applied to the gradient magnitude
to reject extremely weak, unreliable edge responses aris-
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ing from low-contrast regions while preserving all poten-
tial edges of interest. The resulting image undergoes non-
maximal suppression in the gradient direction to dramati-
cally reduce extraneous pixels without explicit thresholds;
the result is a sparse feature mask image, with a gradient di-
rection and magnitude associated with every valid pixel. As
with other edge-based methods (Dickmanns and Mysliwetz
1992; Kang and Jung 2003; Kreucher et al. 1998), the use of
spatial gradients and data-relative local acceptance thresh-
olds provides a degree of robustness to commonly observed
conditions such as shadowing, low contrast road paint, and
variable road pavement texture.

In the second step, a connected components algorithm
iteratively walks the feature mask to generate smooth con-
tours of ordered points, broken at discontinuities in location
and gradient direction. This results in a new image whose
pixel values indicate the identities and positions of the de-
tected contours, which in turn represent candidate road paint
boundaries. While the downstream fusion algorithm could
make direct use of these raw boundaries, two problems im-
mediately become apparent: true road paint markings will
exhibit separate “double” contours, one on either side of a
given painted line, representing the dark-to-light and light-
to-dark transitions; and many detected contours may corre-
spond to undesirable intensity edges observed, for exam-
ple, due to hard shadow lines or changes in road mater-
ial. Therefore, at this stage we enforce the constraint that
lines of interest are thin, elongated, light-on-dark regions
whose boundaries are parallel in metric coordinates. This
constraint precludes detection of dark-on-light road mark-
ings and small features such as circular reflectors, and sub-
stantially reduces false detections and confusion conditions
arising from commonly occurring visual phenomena (Mc-
Call and Trivedi 2006).

In order to localize the desired centerlines between de-
tected double-boundaries, we apply a second iterative walk
to the contour image described above. At each boundary
pixel pi , traversed in contour order, the algorithm extends
a virtual line in the direction of the local gradient di until it
meets a distinct contour at pj (Fig. 6c). If the gradient of the
second contour dj points in a direction opposite di , and if
the metric distance between pi and pj is within pre-defined
limits corresponding to the expected width of painted lines,
then the midpoint of pi and pj is added to a growing center-
line curve. Many non-paint contours (e.g., those with only
one edge or wrong width) are thus removed from consider-
ation.

At this stage our detection algorithm has constructed a
set of road paint line candidates, each of which is brighter
than its surround; however, this candidate set may be cor-
rupted by undesirable line fragments and outliers. The third
and final step of the algorithm therefore applies a series of
higher level post-processing operations to produce smooth,

high-confidence line estimates for consumption by subse-
quent data fusion and lane estimation stages. We first merge
any contour fragments whose union produces a smooth
curve (i.e. does not introduce discontinuities or high curva-
ture); unlike other methods (Lee 2002; Lee and Yi 2005;
Kang and Jung 2003), we do not enforce straight line con-
straints. Next, we fit parabolic arcs to the merged curves and
recursively break them at points of high deviation. Finally,
all curves shorter than a given threshold length (in pixels and
in metric units) are removed before the final image-relative
road paint lines are produced. As with the first road paint de-
tection algorithm, these are inverse-perspective mapped and
projected onto the ground plane before further processing.

In practice, the primary differences between the two
road paint detection algorithms we employ lie in sensitiv-
ity and speed. The contour-based detector tends to esti-
mate smoother curves due to its parabolic curve model; the
gradient-based detector is able to more accurately capture
the geometry of non-parabolic curves. The variable width
filter kernels of the gradient-based detector give it a range
advantage, allow it to more reliably detect road paint in im-
age regions where the road paint spans only a few image
pixels. Lastly, fitting parabolic arcs was faster than the spline
search, which allowed the contour-based detector to operate
at a higher framerate.

2.1.4 Reducing false positives with obstacle masking

Many world objects exhibit striped appearances that mimic
the painted lane boundaries of interest, leading to incorrect
detection candidates at early stages of processing. Many
such candidates are eliminated via subsequent curvature
constraints, spline fitting, and projected length filters, but
even with these measures in place, some problematic false
positives can still occur due to objects such as fences, guard
rails, side trim, vehicle fenders, and buildings with horizon-
tal patterns.

For our vehicle, we developed a lidar-based obstacle de-
tection system whose primary purpose was to ensure that
our vehicle avoided collisions with other cars and obstacles.
Many objects that can generate false lane detections (such as
guard rails) are easily detected by this lidar-based obstacle
detector. Since true road paint markings occur only on flat
(obstacle-free) ground, the detection of an obstacle implies
that any lane detections directly under or near that obstacle
are incorrect. Further, since the body-relative 6-DOF poses
of all our sensors are known, we can project all 3D obsta-
cle detections into the 2D pixel coordinates of each camera
(Fig. 7b). These projections are used to mask corresponding
regions in the camera images, explicitly suppressing road
lines detected in those regions (Fig. 7c).

The lidar-based obstacle detector is described in detail in
a separate paper (Leonard et al. 2008). Briefly, the obsta-
cle detection system relied on a heterogeneous collection of
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Fig. 7 (a) Lidar identified obstacles. (b) Obstacles projected into an
image. (c) Mask (grey) created from horizon line and obstacles. Road
paint detections within this mask are discarded

lidars affording a 360-degree field of view. A Velodyne li-
dar, containing 64 independent lasers, served as the primary
obstacle detection sensor. The Velodyne produces a million
point samples per second, providing nearly full 3D cover-
age. Obstacles were detected by grouping lidar returns over
a polar grid aligned with the ground plane. If the heights
of lidar returns within a single grid cell exhibited signifi-
cant variation (allowing for outliers), a vertical obstacle was
reported within that cell. Additionally, seven SICK lidars
formed a horizontal “skirt” around the vehicle, augmenting
the obstacles detected by the Velodyne. The SICK sensors
served two roles: they filled in the Velodyne’s blind spots
and served as redundant sensors in the event that the Velo-
dyne failed.

Fig. 8 Road boundaries from lidar. From lidar data, our algorithms are
able to detect berms and curbs that typically indicate road boundaries.
These boundaries are found by casting rays from the vehicle position:
the first transition from smooth surface to rough surface serves as a
point detection of the road boundary. Splines are then fit through the
detected points in order to yield the road-boundary estimate

2.1.5 Road boundaries from lidar

In addition to detecting large obstacles like guard rails and
other cars, the lidar subsystem can detect smaller hazards
such as the berms and curbs that often delineate the bound-
aries of a road. These detections provide evidence that can
be fused into the lane centerline estimator to better localize
lanes, and in fact represent complementary features that can
be used to identify the shape of the road even in the absence
of painted lines. We briefly summarize the road boundary
detection system here; more detail can be found in a sepa-
rate publication (Leonard et al. 2008).

Both the Velodyne lidar and the SICK lidars are used
to detect road boundaries. The “roughness” of a particu-
lar patch of terrain can be estimated by looking for large
changes in elevation over small translational changes. These
slopes are collected into a 2D array, such that the value of
each cell in the array corresponds to the observed roughness
of some patch of ground. This resulting roughness map is il-
lustrated by the red areas in Fig. 8. A complication arises due
to moving obstacles: the presence of a large vertical discon-
tinuity, perhaps arising from the car ahead, does not indicate
a road boundary. We reject these false positives using short-
term memory: if a given cell is ever observed to be “smooth”
(i.e., part of the road), then any detections of a vertical dis-
continuity in that cell are ignored. The entire ground surface
will thus eventually be observed as transient objects move to
uncover it.

From the “roughness map”, we detect road boundaries by
casting rays from a point near the vehicle, which we assume
is on the road. The first transition from smooth to rough
is recorded along each ray, forming a set of road-boundary
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point detections (see Fig. 8). Much like maximal filter re-
sponses in the camera road paint detectors, these point detec-
tions are prone to false positives. However, by fitting splines
through the points and rejecting those splines that do not
match a model of road boundaries, the false positive rate is
reduced to an acceptable (very low) level.

The resulting road boundary detections are used as ev-
idence and incorporated into an evidence grid, a process
discussed in the following section. When road paint detec-
tion fails (due to absent or difficult-to-detect road paint),
our road-tracking system relies solely on lidar-derived road
boundaries in order to stay on the road.

2.2 Lane centerline estimation

The second stage of lane finding estimates the geometry of
nearby lanes using a weighted set of recent road paint and
curb detections, both of which are represented as piecewise
linear curves. To simplify the process, we estimate only lane
centerlines, which we model as locally parabolic segments.
While urban roads are not designed to be parabolic, this rep-
resentation is generally accurate for stretches of road that lie
within sensor range (about 50 m in our case).

Lanes centerlines are estimated in two steps. First, a cen-
terline evidence image D is constructed, where the value
D(p) of each image pixel corresponds to the evidence that
a point p = [px,py] in the local coordinate frame lies on a
lane center. Second, parabolic segments are fit to the ridges
in D and evaluated as lane centerline candidates.

2.2.1 Centerline evidence image

To construct D, road paint and curb detections are used to in-
crease or decrease the values of pixels in the image, and are
weighted according to their age (older detections are given
less weight). The value of D at a pixel corresponding to the
point p is computed as the weighted sum of the influences
of each road paint and curb detection di at the point p:

D(p) =
∑

i

e−a(di )λg(di,p)

where a(di) denotes how much time has passed since di was
first detected, λ is a decay constant, and g(di,p) is the influ-
ence of di at p. We chose λ = 0.7.

Before describing how the influence is determined, we
make three observations. First, a lane is most likely to be
centered half a lane width from a strip of road paint or a
curb. Second, 88% of federally managed lanes in the US are
between 3.05 m and 3.66 m wide (Highway Statistics 2005).
Third, a curb gives us different information about the pres-
ence of a lane than does road paint. From these observations
and the characteristics of our road paint and curb detectors,

we define two functions frp(x) and fcb(x), where x is the
Euclidean distance from di to p:

frp(x) = −e− x2
0.42 + e− (x−1.83)2

0.14 (3)

fcb(x) = −e− x2
0.42 (4)

The functions frp and fcb are intermediate functions used
to compute the influence of road paint and curb detections,
respectively, on D. frp is chosen to have a minimum at
x = 0, and a maximum at one half lane width (1.83 m).
fcb is always negative, indicating that curb detections are
used only to decrease the evidence for a lane centerline. We
elected this policy due to our curb detector’s occasional de-
tection of curb-like features where no curbs were present.
Let c indicate the closest point on di to p. The actual influ-
ence of a detection is computed as:

g(di,p) =

⎧⎪⎨
⎪⎩

0 if c is an endpoint of di , else

frp(‖p − c‖) if di is road paint, else

fcb(‖p − c‖) if di is a curb

This last condition is introduced because road paint and
curbs are observed only in short sections. The effect is that
a detection influences only those centerline evidence values
immediately next to it, and not in front of or behind it.

In practice, D can be initialized once and updated incre-
mentally by adding the influences of newly received detec-
tions and applying an exponential time decay at each up-
date. Additionally, we improve the system’s ability to detect
lanes with dashed boundaries by injecting imaginary road
paint detections connecting two separate road paint detec-
tions when they are physically proximate and collinear.

2.2.2 Parabola fitting

Once the centerline evidence image D has been constructed,
the set R of ridge points is identified by scanning D for
points that are local maxima along either a row or a col-
umn, and whose value exceeds a minimum threshold. Next,
a random sample consensus (RANSAC) algorithm (Fischler
and Bolles 1981) fits parabolic segments to the ridge points.
At each RANSAC iteration, three ridge points are randomly
selected for a three-point parabola fit. The directrix of the
parabola is chosen to be the first principal component of the
three points.

To determine the set of inliers for a parabola, we first
compute its conic coefficient matrix C (Hartley and Zisser-
man 2001), and define the set of candidate inliers L to con-
tain the ridge points within some algebraic distance α of C.

L = {p ∈ R : pT Cp < α}
For our experiments, we chose α = 1 m. The parabola

is then re-fit to L using a linear least squares method, and
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Fig. 9 The second stage of our system constructs a centerline evidence
image. Lane centerline candidates (blue) are identified by fitting par-
abolic segments to the ridges of the image. Front-center camera view
is shown in top left for context

a new set of candidate inliers is computed. Next, the can-
didate inliers are partitioned into connected components,
where a ridge point is connected to all neighboring ridge
points within a 1 meter radius. The set of ridge points in the
largest component is chosen as the set of actual inliers for
the parabola. The purpose of this partitioning step is to en-
sure that a parabola cannot be fit across multiple ridges, and
requires that an entire identified ridge be connected. Finally,
a score s for the entire parabola is computed.

s =
∑
p∈L

1

1 + pT Cp

The contribution of an inlier to the total parabola score
is inversely related to the inlier’s algebraic distance, with
each inlier contributing a minimum amount to the score.
The overall result is that parabolas with many good inliers
have the greatest score. If the score of a parabola is below
some threshold, it is discarded. Experimentation with differ-
ent values yielded a useful score threshold of 140.

After a number of RANSAC iterations (we found 200 to
be sufficient), the parabola with greatest score is selected
as a candidate lane centerline. Its inliers are removed from
the set of ridge points, and all remaining parabolas are re-fit
and re-scored using the reduced set of ridge points. The next
best-scoring parabola is chosen, and this process is repeated
to produce at most 5 candidate lane centerlines (Fig. 9). Each
candidate lane centerline is then discretized into a piecewise
linear curve and transmitted to the lane tracker for further
processing. Figure 10b shows three such candidates.

2.3 Lane tracking

The primary purpose of the lane tracker is to maintain a
stateful, smoothly time-varying estimate of the nearby lanes
of travel. To do so, it uses both the candidate lane center-
lines produced by the centerline estimator and an a priori
estimate derived from the provided road map.

Fig. 10 (a) The RNDF provides weak a priori lane centerline es-
timates (white) that may go off-road, e.g. through trees and bushes.
(b) On-board sensors are used to detect obstacles, road paint, and
curbs, which are in turn used to estimate lanes of travel, modeled as
parabolic segments (blue). (c) The sensor-derived estimates are then
filtered, tracked, and fused with the RNDF priors

In the context of the Urban Challenge, the road map
was provided as a Route Network Description File (RNDF)
(2007). The RNDF can be thought of as a directed graph,
where each node is a waypoint in the center of a lane, and
edges represent intersections and lanes of travel. Waypoints
are given as GPS coordinates, and can be separated by ar-
bitrary distances; a simple linear interpolation of connected
waypoints may go off road, e.g. through trees and houses. In
our system, the RNDF was treated as a strong prior on the
number of lanes, and a weak prior on lane geometry.

As our vehicle travels, it constructs and maintains repre-
sentations of all portions of all lanes within a fixed radius of
75 m. When the vehicle nears an RNDF waypoint and does
not already have an estimate for the waypoint’s lane, a new
lane estimate is instantiated and extended to the immediate
neighbors of the waypoint. The lane estimate is extended
and truncated as the vehicle approaches and withdraws from
waypoints in the lane.

The centerline of each lane is modeled as a piecewise lin-
ear curve, with control points spaced approximately every
2 m. Each control point is given a scalar confidence value
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indicating the certainty of the lane tracker’s estimate at that
point. The lane tracker decays the confidence of a control
point as the vehicle travels, and increases it either by detect-
ing proximity to an RNDF waypoint or by updating control
points with centerline estimates from the second stage.

As centerline candidates are generated, the lane tracker
attempts to match each candidate with a tracked lane. If
matching is successful, the centerline candidate is used to
update the lane estimate. To determine if a candidate c is
a good match for a tracked lane l, the longest segment sc
of the candidate is identified such that every point on sc is
within some maximum distance τ of l. We then define the
match score m(c, l) as:

m(c, l) =
∫

sc

1 + τ − d(sc(x), l)

τ
dx

where d(p, l) is the distance from a point p to the lane l. In-
tuitively, if sc is sufficiently long and close to this estimate,
it is considered a good match. We designed the matching
function to rely only on the closest segment of the candi-
date, and not on the entire candidate, based on the premise
that as the vehicle travels, the portions of a lane that it ob-
serves vary smoothly over time, and previously unobserved
portions should not adversely affect the matching provided
that sufficient overlap is observed elsewhere.

Once a centerline candidate has been matched to a
tracked lane, it is used to update the lane estimates by map-
ping control points on the tracked lane to the candidate,
with an exponential moving average applied for temporal
smoothing. Figure 10 illustrates this process. After a cen-
terline candidate has been used to update a tracked lane
estimate, it is not re-used. At each update, the confidence
values of control points updated from a matching are in-
creased, and others are decreased. If the confidence value of
a control point decreases below some threshold, its position
is discarded and recomputed as a linear interpolation of its
closest surrounding confident control points.

3 Urban challenge results

The most difficult part of evaluating a lane detection and
tracking system for autonomous vehicle operation often lies
in finding a suitable test environment. Legal, financial, and
logistical constraints proved to be a significant hurdle in this
process. We were fortunate to have the opportunity to con-
duct an extensive test in the 2007 DARPA Urban Challenge,
which provided a large-scale real-world environment with
a wide variety of roads. Both the type and quality of roads
varied significantly across the race, from well-marked ur-
ban streets, to steep unpaved dirt roads, to a 1.6 km stretch
of highway. Throughout the race, approximately 50 human-

driven and autonomous vehicles were simultaneously active,
thus providing realistic traffic scenarios.

Our most significant result is that our lane detection and
tracking system successfully guided our vehicle through a
90 km course in a single day, at speeds up to 40 km/h, with
an average speed of 16 km/h. A post-race inspection of our
log files revealed that at almost no time did our vehicle have
a lane centerline estimate more than half a lane width from
the actual lane centerline, and at no time did it unintention-
ally enter or exit a travel lane. We note that the output of
the lane tracking system was used directly to guide the nav-
igation and motion planning systems; had the lane tracking
system yielded an incorrect estimate, our vehicle would have
traveled along that estimate, possibly into an oncoming traf-
fic lane or off-road.

3.1 System confidence

We wished to determine how much our system relied on
perceptually-derived lane estimates, and how much it relied
on prior knowledge of the road as given in the RNDF. To an-
swer this, we examined the distance the vehicle traveled with
high confidence visually-derived lane estimates, excluding
control points where high confidence resulted from proxim-
ity to an RNDF waypoint.

At any instant, our system can either have no confidence
in its visual estimates of the current travel lane, or confi-
dence out to a certain distance a in front of the vehicle. If
the vehicle then travels d meters while maintaining the same
confidence in its visual estimates, then we say that the sys-
tem had a high-confidence estimate a meters in front of the
vehicle for d meters of travel. Computing a for all 90 km
of the race allows us to answer the question of how far out
our system could typically “see” (Table 1). From this, we
see that our vehicle maintained high confidence visual esti-
mates 1 m or more ahead for 56.8 km, or 65.2% of the total
distance traveled. In the remaining portion, the lane tracker
relied on an interpolation of its most recent high-confidence
estimates.

Table 1 Distance traveled with high-confidence visual estimates in
current lane of travel (total distance = 87 km)

Visual range (m) Distance traveled (km)

0 30.3 (34.8%)

1–10 10.8 (12.4%)

11–20 24.6 (28.2%)

21–30 15.7 (18.0%)

31–40 4.2 (4.8%)

41–50 1.3 (1.5%)

>50 0.2 (0.2%)
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Fig. 11 Aerial view of the Urban Challenge race course in Victorville,
CA. Autonomously traversed roads are colored blue in areas where the
lane tracking system reported high confidence, and red in areas of low

confidence. Some low-confidence cases are expected, such as at inter-
sections and areas with no clear lane markings. Failure modes occur-
ring at the circled letters are described in Fig. 12

A second way of assessing the system’s performance is
by examining its estimates as a function of location within
the course. Figure 11 shows an aerial view of areas visited
by our vehicle, colored according to whether or not the ve-
hicle had a high confidence estimate at each point. We note
that our system had high-confidence lane estimates through-
out the majority of the high-curvature and urban portions of
the course. Some of the low-confidence cases are expected,
such as when the vehicle is traveling through intersections
or along roads with no discernible lane boundaries. In other
cases, our system was unable to obtain a high-confidence es-
timate whereas a human would have had little trouble do-
ing so.

Images from our logged camera images at typical failure
cases are shown in Fig. 12 (with locations at which these
failures occurred marked in Fig. 11). A common failure
mode was an inability to detect road paint in the presence
of dramatic lighting variation such as that caused by cast
tree shadows. However, we note that in virtually all of these
cases our system reported no confidence in its estimates and
did not falsely report the presence of a lane.

Another significant failure occurred on the eastern part
of the course, with a 0.5 km dirt road followed by a 1.6 km
stretch of highway. Our vehicle traversed this path four

times, for a total of 8.4 km. The highway was an unex-
pected failure. The travel lane happened to be very wide;
its width did not fit the 3.66 m prior in the centerline estima-
tor, which had trouble constructing a stable centerline evi-
dence image. In addition, most of the highway was uphill
and road paint detection projected onto an assumed level
ground plane had so much projection error that no stable
centerline evidence image was created. Mean vehicle pitch
can be seen in Fig. 16. This last problem could have been ad-
dressed by actively modeling the ground surface with either
vision or LIDAR data.

The final common failure mode occurred in areas with
faint or no road paint, such as the dirt road and roads with
well defined curbs but no paint markings. Since our system
uses road paint as its primary information source, in the ab-
sence of road paint it is no surprise that no lane estimate
ensues. Other environmental cues such as color and texture
may be useful in such situations (Dahlkamp et al. 2006).

3.2 Human-annotated ground truth

For a more objective and quantitative assessment of our sys-
tem, we compared its output to a human-annotated data set
of observable lanes. This data set provides, at every moment
of the race, the geometry of nearby travel lanes registered in
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Fig. 12 Common failure cases (cf. Fig. 11). The most common failure
was in areas with strong tree shadows, as in (a) and (b). Dirt roads,
and those with faint or no road paint (c–e) were also common causes
of failure. In (f), a very wide lane and widely-spaced dashed mark-

ings were a challenge due to our strong prior on lane width. In each of
these failure situations, the system reported no confidence in its visual
estimates

the vehicle’s local reference frame. We briefly describe its
creation here.

Perhaps the simplest method for a person to annotate
ground truth is to examine a visualization of the vehicle and
its sensor data at each desired moment and mark the nearby
travel lanes. While straightforward, this might take several
minutes per instance labeled, and would thus not be an ef-
ficient or even feasible way to densely label many hours of
data.

Instead, we note that over time scales spanning several
hours to several days, ground truth lane geometry does not
typically change relative to a global reference frame. Our
approach is to first produce ground truth lane geometry in
a global frame by annotating geo-registered ortho-rectified
imagery available on Google Maps. We then use our vehi-
cle’s GPS estimates to project ground truth into the vehi-
cle’s local reference frame for further analysis. This projec-
tion suffers from GPS error, so a manual correction is made
when necessary to align the ground truth with observable
cues in the sensor data. These corrections are linearly inter-
polated over time under the premise that the GPS error is
fairly continuous. In the course of annotating the 90 km of
vehicle travel in our Urban Challenge data set, an average of
one correction was made every 45 m.

Generating ground truth lane geometry in this manner al-
lows us to conduct a number of experiments that would oth-
erwise be impossible. We can assess the performance of our
system under a number of different measures, and see how

using it compares to using the RNDF alone without any lo-
cal perception. Most importantly, ground truth enables use
of a quantitative metric with which we can improve and as-
sess future systems.

Lastly, we note that what we are calling “ground truth
lane geometry” is perhaps more accurately described as how
a human would describe nearby lanes, given a visualization
of the vehicle’s sensor data. As such, it may be subject to
hidden or unknown experimental bias, but we believe it is
nevertheless highly useful as is.

3.3 Centerline error

At each point along the centerline line of a lane estimate,
we define its centerline error to be the lateral distance from
that point to the ground truth lane centerline. In the absence
of other obstacles, the vehicle’s motion planner typically at-
tempts to track the lane centerline, so the centerline error is
a fair measure of the overall system accuracy.

Given that the resolution of our sensors decreases with
distance from the vehicle, we expect the accuracy of the lane
estimates to decrease the farther away they are. To confirm
this, lane estimates were evaluated approximately once per
meter of vehicle travel. Centerline error was computed at
1 m intervals on each lane estimate evaluated, starting from
1 m in front of the vehicle up to a distance of 50 m. Lane
estimates behind the vehicle were not evaluated. While those
estimates tended to be much more accurate, they were no
longer useful for forward motion planning.
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Fig. 13 Mean centerline error
10 m in front of vehicle.
(a) RNDF error is also
dependent on GPS receiver
error. (b) Lane tracker fuses
vision and laser range data to
improve RNDF estimates. (c) In
most cases, our system is as
good as or better than using the
RNDF alone
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Fig. 14 Centerline error as a function of distance along lane. (a) Mean
error with 1-σ bounds. (b) As system confidence increases, its ac-
curacy improves. (c) Mean improvement over the RNDF with 1-σ

bounds. (d) Mean improvement over the RNDF by system confidence.
For high confidence estimates our system outperformed the RNDF
only at close ranges

The results of this analysis are shown in Fig. 14. Imme-
diately in front of the vehicle, the mean centerline error was
57 cm, which gradually increased to 70 cm at a distance of
50 m from the vehicle. This reflects all lane estimates pro-
duced by our system, including cases where it reported no
confidence and was simply interpolating RNDF waypoints.
When evaluated in areas of high confidence, we see that the
mean error decreased to 40 cm.

To reconcile these error statistics with our earlier claim
that our vehicle always remained in its lane, we can examine
the width of our vehicle, the centerline error, and the width
of lanes on the course. Most lanes on the course were be-
tween 4 m and 5 m wide. The roads were built to accommo-
date vehicles parked on the side, which would normally re-
sult in narrower lanes, but in the absence of parked cars, the
lanes were effectively much wider. Our vehicle measured
2 m in width, so if it were perfectly centered in a lane, it
would have 1–2 m of space to the lane boundary. A mean
centerline error of 57 cm reduces this margin to 0.4–1.4 m,
which still allows for an imperfect controller. Finally, we

also note that the strong prior our system had on lane width
gave it a tendency to “lock on” to one lane boundary, and
thus produce a centerline estimate that was consistently
1.83 m away from one boundary (our prior on half a lane
width), but that did not coincide with the true lane centerline.

The lane centerline error also allows us to answer the
question, “Is our system better than simple GPS waypoint
interpolation, and by how much?” This is shown in Figs. 14c
and d. Overall, the system is modestly better than using the
RNDF alone, with a mean improvement of 10 cm at a dis-
tance of 10 m from the vehicle. If we again consider only
areas with a high confidence level, the mean improvement
at 10 m from the vehicle increases to 22 cm. Curiously,
at higher confidence levels, the performance of our system
relative to the RNDF decreases with distance. While we
do expect less improvement at greater distances, we would
not normally expect our system to perform worse than the
RNDF. To understand why this happens, we next examine
the effects of lane curvature on centerline error.

Our method of interpolating GPS waypoints given in
the RNDF was simple linear interpolation. As shown in



118 Auton Robot (2009) 26: 103–122

Fig. 15 Mean centerline error as a function of lane curvature. (a) The
RNDF experiences greater error in high-curvature areas. 1-σ bounds
are shown. (b) Higher confidence lane estimates are largely able to
account for curvature. (c) Our system is able to significantly improve
RNDF estimates in high-curvature areas

Fig. 15a, the centerline error of this interpolation grows with
the magnitude of road curvature. On examining this error,
we noticed that the RNDF was significantly more accurate
in areas of low curvature, and in some cases had almost no
error for long stretches of straight road (cf. Fig. 13a). The
distance to which our system reports a confident estimate is
also related to lane curvature, as more of a lane is visible for
low-curvature roads. Thus, in low-curvature areas, our sys-
tem served mostly to add noise to already good estimates at
distance.

Fig. 16 Mean vehicle pitch and roll throughout the Urban Challenge.
Positive pitch and roll values correspond to vehicle nose up and left
side up, respectively

In contrast, our system excelled in areas of high curva-
ture, as shown in Figs. 15b and c. Most of these regions
were sufficiently locally parabolic that our model was able
to accurately capture the curvature of the roads and signif-
icantly improve the RNDF interpolation. For curvatures of
0.05 m−1, mean improvements over the RNDF for high-
confidence estimates were almost 1 m.

Lastly, we evaluate lane centerline error against vehicle
roll and pitch. Mean vehicle roll and pitch are shown in
Fig. 16, and error plots for these factors are given in Fig. 17.
Sustained roll and pitch are good indicators of non-level ter-
rain, and we expect worse performance in these cases in light
of our level ground-plane assumption. As mentioned earlier,
our implementation did not account for these terrain sce-
narios, but doing so even crudely by estimating a non-level
ground plane should help.

Figures 17 show a slight increase in overall centerline
error as roll increases, but not so for pitch. However, we note
that the RNDF error is inversely correlated with pitch and
roll, suggesting that the course was more accurately marked
in areas with non-level terrain. When compared together, we
can see that the performance of our system relative to the
RNDF decreases moderately as roll and pitch increase.
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Fig. 17 Centerline error of our system and the RNDF prior as a func-
tion of vehicle roll and pitch, with 1-σ bounds

3.4 Centerline candidates

Although our system relied on a road map prior for end-
to-end operation, our hope is that it will eventually be able
to provide highly accurate estimates of nearby travel lanes
without any prior at all. To assess its potential for this task,
we can evaluate the accuracy of the centerline candidates
produced by the second stage of the system. These estimates
are made purely from sensor data alone, and require no GPS
or road map prior.

Similar to the filtered and tracked centerline estimates
produced as a final output of the system, the centerline can-
didates can also be evaluated in terms of their centerline
error. We sampled centerline candidates generated approx-
imately every meter of travel, and then computed the center-
line error for various points on each candidate. In each case,
centerline error was computed by comparison to the nearest
ground truth lane.

Figure 18a shows the error distribution for candidate cen-
terlines. 53.5% of points on all candidate centerlines were
within 50 cm of a true lane centerline, and 4.5% were more
than 5 m from any true lane centerline. A common case re-
sulting in large error was when the system generated a can-

Fig. 18 (a) Error distribution for centerline candidates indicating the
frequency and magnitude of candidate centerline error. The ideal dis-
tribution is a single point in the top left corner of the graph. (b) Can-
didate centerline error as a function of distance from the vehicle, with
1-σ bounds

didate centerline on the wrong side of a lane boundary. This
could happen when the top of a curb was detected as road
paint, or when road paint appeared as a lane boundary with
a corresponding curb.

Candidate centerline error as a function of distance from
the vehicle is shown in Fig. 18b. Centerline candidates gen-
erated very close to the vehicle had the least error, with a
mean error of 53 cm at distances of 1–2 m. At a distance of
10–11 m, mean centerline error was 129 cm. Data for this
plot was taken only when the vehicle was actually in a travel
lane; centerline candidates generated in parking areas were
not considered.

After a lane centerline candidate was generated, it un-
derwent a data association step to either match it with an
existing lane estimate or to reject it as an outlier. Our system
relied on a topological prior to provide correct information
about the presence or absence of nearby lanes, and used the
candidates to refine the geometric estimates. By applying
techniques from vision-based object detection and tracking,
our system could be adapted to both detect and track multi-
ple travel lanes.
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Fig. 19 (Top) The average stability ratio. (Bottom) The number of
samples used to compute the stability ratio varies with r , as only con-
trol points with visually-derived high-confidence are used

3.5 Stability

The output of our system is used for high-speed motion plan-
ning; thus we desire that its estimates remain relatively sta-
ble. Specifically, we desire that once the system produces a
high-confidence estimate, that the estimate does not change
significantly. To assess the suitability of our system for this
purpose, we can compute a stability ratio that measures how
much its high-confidence lane estimates change over time in
the lateral direction.

Consider a circle of radius r centered at the current posi-
tion of the rear axle center. We can find the intersection p0 of
this circle with the current lane estimate that extends ahead
of the vehicle. When the lane estimate is updated at the next
time step (10 Hz in this case) we can compute p1, the in-
tersection of the same circle with the new lane estimate. We
define the lane estimator’s stability ratio as:

R = ‖p0 − p1‖
dv

(5)

where dv is distance traveled by our vehicle in that time step.
Intuitively, the stability ratio is the ratio of the transverse

movement of the lane estimate to the distance traveled by
the car in that time, for some r . We can also compute an av-

erage stability ratio for some r by averaging the stability
ratios for every time step of the vehicle’s trip through the
course (Fig. 19). From this figure, we see that the average
stability ratio remains small and relatively constant, but still
nonzero, indicating that high-confidence lane estimates can
be expected to shift slightly as the vehicle moves.

4 Data and software

The interprocess communications framework and software
infrastructure we used during the development of our ve-
hicle allowed us to log most of the sensor data collected
by the vehicle throughout the Urban Challenge Event, and
virtually all of its internal state estimates. In the hope that
this data will be useful to others, we have made it available
online along with software for parsing and visualizing the
data. Due to disk bandwidth constraints, we were able to
log only one camera at the source 22.8 Hz sample rate, with
the other four cameras spatially and temporally decimated.
Data from every other sensor, including the lidar and nav-
igation data, were timestamped and logged at the sensors’
maximum sample rate.

In addition to the original sensor data, these log files also
contain all of the internal state estimates of our system, such
as the road paint detections, centerline candidates, and lane
estimates. We encourage interested readers to use the soft-
ware to better understand our system. The log files and soft-
ware are at: http://dgc.mit.edu/public.

5 Conclusion and future work

We have attempted to extend, to urban environments, the
scope of lane detection and tracking for autonomous vehi-
cles. This paper presented a modular, scalable, perception-
centric lane detection and tracking system that fuses asyn-
chronous heterogeneous sensor streams with a weak prior
to estimate multiple travel lanes in real-time. The system
makes no assumptions about the position or orientation of
the vehicle with respect to the road, enabling it to oper-
ate when changing lanes, at intersections, and when exiting
driveways and parking lots. The vehicle using our system
was, to our knowledge, the only vehicle in the final stage of
the DARPA Urban Challenge to employ vision-based lane
finding for real-time motion planning and control.

Our system works in three stages. In the first stage, cali-
brated cameras and lidars are used to detect road paint and
curbs. A second stage combines the detections in a voting
process to construct a centerline evidence image, which is
then used to form estimates of potential lane centerlines.
A final stage filters and tracks these candidates into lane es-
timates, while also incorporating a weak prior derived from
a road map.

http://dgc.mit.edu/public
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We have provided a quantitative analysis of our vehicle
that evaluates its performance under a number of different
measures. Our evaluation framework allows us to accurately
explain failure modes and determine which aspects would
benefit the most from improvement. Additionally, it allows
us to objectively evaluate future improvements and compare
their successes and failures with those of existing systems.

Despite these advances, our method is not yet suitable
for real-world deployment. As with most vision-based sys-
tems, it is susceptible to strong lighting variations such as
cast shadows, and cannot handle adverse conditions such
as rain and snow. Moreover, we have not used all available
sources of sensor data, and our analysis has revealed cases
in which simplifying assumptions adversely affected system
performance.

We are investigating a number of improvements. For ex-
ample, using lidar intensity data to detect road paint should
improve performance in difficult lighting conditions. While
we used the solar ephemeris to reject false positives due to
solar flare, we could also use it during daylight hours to pre-
dict and detect false positives from shadows. Jointly esti-
mating lane width, lane geometry, and elevation gradients
should all improve detection accuracy. Finally, since many
roads do not use paint as boundary markers, we are extend-
ing our method to incorporate other environmental cues.

Acknowledgements This work was conducted on the MIT 2007
DARPA Urban Challenge race vehicle. We give special thanks to Luke
Fletcher, Olivier Koch, and John Leonard for numerous discussions
and help given throughout the course of this work. We additionally
thank the MIT DARPA Urban Challenge Team for their efforts in build-
ing a fully-operational vehicle. Besides the authors and the three just
mentioned, these team members include David Barrett, Jonathan How,
Troy Jones, Mitch Berger, Bryt Bradley, Ryan Buckley, Stefan Camp-
bell, Alexander Epstein, Gaston Fiore, Emilio Frazzoli, Sertac Kara-
man, Yoshiaki Kuwata, Keoni Maheloni, Katy Moyer, Steve Peters,
Justin Teo, Robert Truax, Robert Galejs, Siddhartha Krishnamurthy,
and Jonathan Williams.

References

Apostoloff, N., & Zelinsky, A. (2004). Vision in and out of vehicles:
Integrated driver and road scene monitoring. International Jour-
nal of Robotics Research, 23(4–5), 513–538.

Baluja, S. (1996). Evolution of an artificial neural network based au-
tonomous land vehicle controller. IEEE Transactions on Systems,
Man and Cybernetics, Part B, 26(3), 450–463.

Bartels, R. H., & Beatty, J. C. (1987). An introduction to splines for use
in computer graphics and geometric modeling. Los Altos: Morgan
Kaufmann.

Bertozzi, M., & Broggi, A. (1998). GOLD: a parallel real-time stereo
vision system for generic obstacle and lane detection. IEEE Trans-
actions on Image Processing, 7(1), 62–80.

Bertozzi, M., Broggi, A., & Fascioli, A. (2000). Vision-based intel-
ligent vehicles: State of the art and perspectives. Robotics and
Autonomous Systems, 1, 1–16.

CNN (2008). Doh! Man follows GPS onto train tracks—when train
coming. http://www.cnn.com/2008/US/01/03/gps.traincrash.ap/
index.html, Jan. 2008.

Dahlkamp, H., Kaehler, A., Stavens, D., Thrun, S., & Bradski, G.
(2006). Self-supervised monocular road detection in desert ter-
rain. In Proceedings of robotics: science and systems. Philadel-
phia.

Dickmanns, E., & Mysliwetz, B. (1992). Recursive 3-d road and ego-
state recognition. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 14(2), 199–213.

Leonard, J. et al. (2008). A perception-driven autonomous vehicle.
Journal of Field Robotics, 25(10), 727–774.

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus:
A paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM, 24(6),
381–395.

Fletcher, L., & Zelinsky, A. (2006). Context sensitive driver assistance
based on gaze–road scene correlation. In Int. symposium on ex-
perimental robotics (pp. 287–296), Rio De Janeiro, Brazil, Jul.
2006.

Hartley, R. I., & Zisserman, A. (2001). Multiple view geometry in
computer vision. Cambridge: Cambridge University Press. ISBN:
0521623049.

Iteris, Inc. (2009). http://www.iteris.com.
Kang, D.-J., & Jung, M.-H. (2003). Road lane segmentation using dy-

namic programming for active safety vehicles. Pattern Recogni-
tion Letters, 24(16), 3177–3185.

Kim, Z. (2008). Robust lane detection and tracking in challenging sce-
narios. IEEE Transactions on Intelligent Transportation Systems,
9(1), 16–26.

Kreucher, C., & Lakshmanan, S. (1999). LANA: A lane extraction al-
gorithm that uses frequency domain features. IEEE Transactions
on Robotics and Automation, 15(2), 343–350.

Kreucher, C., Lakshmanan, S., & Kluge, K. (1998). A driver warn-
ing system based on the LOIS lane detection algorithm. In The
Proceedings of the IEEE international conference on intelligent
vehicles (Vol. 1, pp. 17–22), Oct. 1998.

Lyall, S. (2007). Turn back. Exit village. Truck shortcut hitting barrier,
New York Times. http://www.nytimes.com/2007/12/04/world/
europe/04gps.html, Dec. 2007.

Lee, J. W. (2002). A machine vision system for lane-departure detec-
tion. Computer Vision and Image Understanding, 86(1), 52–78.

Lee, J. W., & Yi, U. K. (2005). A lane-departure identification based on
LBPE, Hough transform, and linear regression. Computer Vision
and Image Understanding, 99(3), 359–383.

McCall, J. C., & Trivedi, M. M. (2006). Video-based lane estimation
and tracking for driver assistance: Survey, system, and evaluation.
IEEE Transactions on Intelligent Transport Systems, 7(1), 20–37.

Miller, T. R. (1993). Benefit-cost analysis of lane marking. Public
Roads, 56(4), 153–163.

Mobileye (2009). Mobileye camera based system for: collision warn-
ing, lane departure, headway monitoring. http://www.mobileye.
com.

Moore, D., Huang, A. S., Walter, M., Olson, E., Fletcher, L., Leonard,
J., & Teller, S. (2009). Simultaneous local and global state estima-
tion for robotic navigation. In Proc. IEEE int. conf. robotics and
automation, May 2009.

US Department of Transportation, Federal Highway Administration,
Office of Information Management (2005). Highway Statistics
2005. US Government Printing Office, Washington, DC, 2005.

Pomerleau, D. (1995). Neural network vision for robot driving. In
M. Arbib (Ed.), The handbook of brain theory and neural net-
works. Cambridge: MIT Press.

Pomerleau, D., & Jochem, T. (1996). Rapidly adapting machine vision
for automated vehicle steering. IEEE Expert: Special Issue on In-
telligent System and their Applications, 11(2), 19–27. See also
IEEE Intelligent Systems.

http://www.cnn.com/2008/US/01/03/gps.traincrash.ap/index.html
http://www.cnn.com/2008/US/01/03/gps.traincrash.ap/index.html
http://www.iteris.com
http://www.nytimes.com/2007/12/04/world/europe/04gps.html
http://www.nytimes.com/2007/12/04/world/europe/04gps.html
http://www.mobileye.com
http://www.mobileye.com


122 Auton Robot (2009) 26: 103–122

Rasmussen, C. (2008). RoadCompass: following rural roads with vi-
sion + ladar using vanishing point tracking. Autonomous Robots,
25(3), 205–229.

Route network definition file (RNDF) and mission data file (MDF) for-
mats. Defense Advanced Research Projects Agency, Mar. 2007.

Taylor, C. J., Kosecká, J., Blasi, R., & Malik, J. (1999). A comparative
study of vision-based lateral control strategies for autonomous
highway driving. International Journal of Robotics Research,
18(5), 442–453.

Thorpe, C., Hebert, M., Kanade, T., & Shafer, S. (1988). Vision
and navigation for the Carnegie-Mellon Navlab. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI, 10(3),
362–373.

Zhang, W.-B. (1991). A roadway information system for vehicle
guidance/control. In Vehicle navigation and information systems
(Vol. 2, pp. 1111–1116), Oct. 1991.

Albert S. Huang received his Sc.B./
A.B. from Brown University in
2003, and his M.S. in Electrical
Engineering and Computer Science
from the Massachusetts Institute
of Technology (MIT) in 2005. He
is is a Ph.D. student at MIT, and
has studied mobile robot perception
since 2005.

David Moore was a student techni-
cal lead for MIT’s entry to the 2007
DARPA Urban Challenge while a
Ph.D. student at MIT. He is cur-
rently a software engineer at Dream-
Works Animation SKG, Inc. in
Glendale, California. He is also ac-
tive in the open source commu-
nity, where he has contributed to the
Linux kernel and worked on a num-
ber of imaging-related projects.

Matthew Antone received his B.Sc.
and M.Eng. in Electrical Engineer-
ing from MIT in 1996, and his
Ph.D. in Electrical Engineering and
Computer Science from MIT in
2001. He is currently a Principal
Scientist in the Computer Vision
Group at BAE Systems Advanced
Information Technologies, where
his research interests include object
recognition, active tracking, sensor
calibration, and scene perception
from 2D and 3D data.

Edwin Olson received his Ph.D.
in Electrical Engineering and Com-
puter Science from MIT in 2008. He
is currently an Assistant Professor at
the University of Michigan.

Seth Teller is a Professor of Com-
puter Science and Engineering in
the Department of Electrical Engi-
neering and Computer Science at
MIT. He led the perception efforts of
the MIT Urban Challenge Team.


	Finding multiple lanes in urban road networks with vision and lidar
	Abstract
	Introduction

	Finding multiple lanes in urban road networks with vision and lidar
	Introduction
	Related work

	Approach
	Road boundary detection
	Absolute sensor calibration
	Road paint from matched filters
	Road paint from symmetric contours
	Reducing false positives with obstacle masking
	Road boundaries from lidar

	Lane centerline estimation
	Centerline evidence image
	Parabola fitting

	Lane tracking

	Urban challenge results
	System confidence
	Human-annotated ground truth
	Centerline error
	Centerline candidates
	Stability

	Data and software
	Conclusion and future work
	Acknowledgements
	References


